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Although glassy relaxation is typically associated with disorder, here we report on a new type of glassy

dynamics relating to dislocations within 2D crystals of colloidal dimers. Previous studies have demon-

strated that dislocation motion in dimer crystals is restricted by certain particle orientations. Here, we drag

an optically trapped particle through such dimer crystals, creating dislocations. We find a two-stage

relaxation response where initially dislocations glide until encountering particles that cage their motion.

Subsequent relaxation occurs logarithmically slowly through a second process where dislocations hop

between caged configurations. Finally, in simulations of sheared dimer crystals, the dislocation mean

squared displacement displays a caging plateau typical of glassy dynamics. Together, these results reveal a

novel glassy system within a colloidal crystal.
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Dislocation mobility is central to both the materials
properties and relaxation mechanisms of crystalline mate-
rials [1–3]. Previous studies of dislocation motion in col-
loidal crystals composed of spherical particles have
allowed a particle-scale view of defect formation and
transport [4–7]. More recent experiments [8,9] have be-
gun to interrogate the role of particle anisotropy in de-
termining the rules of defect motion. In particular, studies
of dislocation motion in crystals of colloidal dimer parti-
cles have uncovered novel restrictions on dislocation mo-
bility. In these ‘‘degenerate crystals,’’ the dimer lobes
occupy triangular lattice sites while the particles are ran-
domly oriented among the three crystalline directions, as
shown in Fig. 1. One consequence of the random orienta-
tions of the dimers is that dislocation glide is severely
limited by certain particle arrangements in degenerate
crystals [8].

The present work utilizes local mechanical perturbation
experiments to investigate the effects of this restricted
dislocation motion on the relaxation mechanisms in degen-
erate crystals of colloidal dimers. Holographic optical
tweezers are used to manipulate single lobe-sized spherical
intruder particles within an otherwise pure degenerate
crystal grain, deforming the crystal and introducing de-
fects. During the subsequent relaxation of the degenerate
crystal, dislocations formed during the deformation leave
the grain, either via annihilation with other dislocations or
by moving to a grain boundary. Interestingly, we find that
in large crystalline grains this dislocation relaxation occurs
through a two-stage process reminiscent of slow relaxa-
tions in glassy systems, suggesting the novel concept that
glassy phenomena may be present within certain kinds of
colloidal crystals.

We synthesize sterically stabilized silica dimer shell
particles with spherical lobes of diameter 1:3 �m and
lobe separation 1:4 �m as previously described [8,9]. For

the spherical intruder particles, we include 1% volume
fraction of 1:3 �m polystyrene spherical particles that
are coated with silica and sterically stabilized by using
polyvinylpyrrolidone (PVP) to produce surface chemistry
identical to the dimer particles. All particles are suspended
in an aqueous solution of dimethylsulfoxide that index
matches the silica shells (with density mismatch
�0:5 g=mL). The polystyrene cores of the spherical in-
truder particles remain index-mismatched, allowing for
optical manipulation using laser tweezers. Thus, perturba-
tions to the degenerate crystal are applied only via the
motion of the intruder particle. The suspension is pipetted
into a sealed wedge-shaped glass cell as previously de-
scribed [8], and the particle area fraction (maintained at
�0:8) is controlled by tilting the cell so that particles
sediment into the viewing region, which accommodates
only a 2D monolayer of particles. During the perturbation
experiments, the crystal is imaged by using a confocal
microscope integrated with the holographic optical
tweezer system (Arryx, Inc.) [10].
In preparation for a local perturbation experiment,

one intruder particle is moved to the center of a degen-
erate crystal grain, and then the system is allowed to relax
for at least 10 hours until the grain is defect-free. Fig-
ures 1(a)–1(c) show a typical drag experiment for a small
degenerate crystal grain consisting of N � 100 dimer par-
ticles. At time t ¼ 0 s [Fig. 1(a)] the optical tweezers are
turned on and used to drag the intruder particle by one
lattice constant (LC) along a lattice direction, arriving at
the new lattice position at t ¼ 20 s. Then the optical
tweezers are turned off and the grain is imaged until all
the defects leave the grain or recombine [Fig. 1(c)].
Dislocations created by the drag deformation are identified
from the microscope images by calculating the number of
nearest neighbors for each lobe using Voronoi analysis.
Each dislocation, consisting of paired fivefold- and

PRL 105, 078301 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

13 AUGUST 2010

0031-9007=10=105(7)=078301(4) 078301-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.078301


sevenfold-coordinated lobes, is tracked over the
experiment.

We observe different relaxation behavior depending on
the degenerate crystal grain size. In small grains, the
intruder particle remains stationary after being dragged to
its new lattice position, even after the tweezers are turned
off. In such cases, dislocations like those identified by
arrows in Fig. 1(b) glide to the edge of the grain and are
absorbed by the grain boundary, which we identify by
using Voronoi analysis (details in the supplementary ma-
terial). In larger grains [Figs. 1(d)–1(f)], we observe that
dislocations gliding toward the grain boundary are more

likely to encounter glide-blocking particles whose orienta-
tions prevent further glide [8]. For example, the disloca-
tions marked by arrows in Fig. 1(e) must travel so far to
reach the grain edge [beyond the field of view of Fig. 1(e)]
that they encounter the blocking particles shown in red.
Consequently, when the optical tweezers are turned off,
these dislocations return toward the intruder particle, re-
combining with the other defects produced by the defor-
mation and causing the intruder particle to recoil.
To elucidate the effect of grain size on the recoil distance

of the intruder particle, we conduct 19 independent defor-
mation experiments on degenerate crystal grains of varying
size. We find that a crossover from the stationary response
to the recoiling response occurs when dislocations pro-
duced during the deformation must traverse distances Z >
10 LC to reach a grain boundary (Fig. 2). This result is
consistent with the previously reported distribution of un-
restricted dislocation glide distances �ðZÞ, which was
found to decay exponentially (dashed gray curve in
Fig. 2) [8]. Together, these results depict the probabilistic
process, governed by the distribution �ðZÞ, by which a
deformation-induced dislocation may glide to a grain
edge without meeting an obstacle.
Although unrestricted dislocation glide over long dis-

tances is improbable, multidefect mechanisms such as
dislocation reactions can allow dislocations to bypass
glide-blocking obstacles and achieve long range motion
[8]. However, since the energy required for such disloca-
tion interactions is higher than that for simple dislocation
glide [8], larger mechanical deformations are required to
access such processes. Furthermore, mechanisms involv-
ing more than one defect are statistically less probable and
consequently may require longer waiting times.
In order to probe such multidefect relaxation responses,

we conduct long time relaxation experiments where a
perturbation is rapidly applied to a large degenerate crystal
grain. Before each experiment, one intruder particle is
placed near the center of a large degenerate crystal grain
containing more than 700 dimer particles. At time t ¼ 0 s,

FIG. 1 (color). Micrographs illustrating a local perturbation
experiment. Fivefold- and sevenfold-coordinated defects created
by the perturbation are marked with pink and blue dots, respec-
tively. (a) A single spherical intruder particle in a small grain is
dragged by 1 LC by using optical tweezers. (b) Two dislocations
marked by arrows glide to the grain edge and are absorbed by the
grain boundary (solid closed curve). (c) The intruder particle
remains stationary after the tweezers are turned off. The vacancy
left behind has no topological charge and is stable. (d)–(f) In a
large grain (only the central part is shown here) the dislocations
marked by arrows are obstructed by the particles in red. When
the tweezers are turned off, the blocked dislocations return along
their glide paths, recombining and causing the intruder particle
to recoil.

FIG. 2. Recoil distance R as a function of glide distance Z to
the nearest grain boundary. The error bars represent uncertainty
in particle position. The distribution of unrestricted glide dis-
tances �ðZÞ (dashed gray curve) is reprinted from Ref. [8].
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the intruder particle is quickly dragged by 3 LC, arriving at
its new lattice position at t ¼ 5 s. The optical trap is turned
off and the system is imaged for 10 hr or until all the
defects produced by the deformation leave the crystal
grain. We record the number of defects by counting the
lobes within the crystal grain that do not have six nearest
neighbors. For example, a dislocation consisting of one
fivefold- and one sevenfold-coordinated lobe is counted as
two defects.

To compare the relaxation response of degenerate crys-
tals with a system where dislocations are known to glide
without geometric restrictions, we repeat this experimental
procedure on crystals of spheres. Here we prepare crystals
of PVP-stabilized 1 �m silica spheres suspended in an
index-matching aqueous solution of dimethylsulfoxide,
and we use 1 �m PVP-stabilized silica-coated polystyrene
spheres as the intruder particles.

The results from long time relaxation experiments on
both degenerate crystals and crystals of spheres are shown
in Fig. 3. In crystals of spheres, the decrease in the average
number of defects �Nd after the optical trap is turned off
follows an exponential decay. The best fit exponential for

this decay is �Nd ¼ 23e�t=�S , where �S ¼ 5� 0:5 s. In
degenerate crystals, the initial decay of �Nd is also charac-
terized by an exponential decay, but a long tail is evident
for later times. The best fit curve for this system combines
both exponential and logarithmic decay terms: �Nd ¼
25e�t=�� þ 0:55 lnð1þ ��

t Þ, where �� ¼ 6� 1 s and �� ¼
ð2� 1Þ � 105 s. These data depict strikingly different re-
laxation responses in the two systems. In crystals of
spheres, dislocations leave the grain via one fast mecha-
nism with characteristic time scale �S. In degenerate crys-
tals, a similar initial fast response with time scale �� is

followed by a much slower process with a time scale ��
that is 5 orders of magnitude larger than ��.

Such two-stage relaxation is reminiscent of the slow
relaxation dynamics common to many glassy systems
[11–13]. Studies of colloidal glasses have revealed a ca-
ging effect where particles are confined by their neighbors
[13] and are transported through the glass in two stages: an
initial fast diffusion until encountering the caging neigh-
bors, and a much slower cage-hopping process caused by
multiparticle rearrangements that shift the cage structure.
This two-stage glassy relaxation is characterized by a long
tail similar to that observed in defect relaxation for degen-
erate crystals (Fig. 3), suggesting that defect dynamics in
dimer crystals is glassy.
Similarly to a particle in a glass, a dislocation in a

degenerate crystal is caged. Initially, it moves via unre-
stricted glide at a rate characterized by ��, until it reaches

particles with glide-blocking orientations. Here it remains
caged until a second process characterized by the time
scale �� can allow it to hop to a new region of unrestricted
glide. This two-stage relaxation process also explains the
recoil measurements in Fig. 2. For small grains where
dislocations need to travel only a short distance to reach
the grain boundary, relaxation can occur through unre-
stricted glide alone. For larger grains, both stages of re-
laxation would be needed for the dislocations to exit the
grain. However, this would require sufficiently long time
scales for cage-hopping processes to occur. Particles in the
recoil experiments are dragged only 1 LC with a drag
duration of �� < 20 s � ��, which does not create enough

defects to trap the system and allow enough time for multi-
defect relaxation processes, thus leading to the observed
recoil in large grains.
Glassy relaxation can be directly observed in colloidal

glasses by measuring the particle mean square displace-
ment (MSD) versus time. Visualizing dislocation trajecto-
ries in local deformation experiments is complicated by the
fact that all the defects originate near the intruder particle
rather than uniformly throughout the system as would
occur during macroscopic deformations. To explore such
macroscopic deformations we run nonequilibrium molecu-
lar dynamics simulations of dimer and sphere crystals
under uniform shear. This approach probes defect dynam-
ics in a nonequilibrium ‘‘steady state’’ rather than a per-
turbation. Furthermore, such simulations allow for
comparison of dimer and sphere crystals in ideal condi-
tions without grain boundaries or particle polydispersity.
The simulations are conducted in a 2D canonical ensemble
wherein hard spheres (or dimer lobes) interact via the
Weeks-Chandler-Andersen potential [14]. In reduced
Lennard-Jones units, the system has size 50� 50, sphere
or lobe diameter d ¼ 1, dimer lobe separation 1.07 main-
tained by using holonomic constraints, and temperature of
1 maintained via a configurational thermostat [15]. Area
fractions of 0.808 for dimers and 0.792 for spheres are
chosen to have both systems at identical pressure, tempera-
ture, and chemical potential. A homogeneous shear field is
applied to initially defect-free crystals by using Sllod

FIG. 3. Average number of defects versus time for large
(>700 particles) degenerate crystals and crystals of spheres.
Error bars represent the standard error of the mean. The solid
line is the best fit exponential for the decay in the sphere data
(R2 ¼ 0:99); the dashed line is the best fit sum of an exponential
and a logarithmic decay for the dimer data (R2 ¼ 0:99).
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equations of motion (so named because of their close
relationship to the Dolls tensor algorithm) [16] and Lees-
Edwards periodic boundary conditions [17]. The equations
of motion are integrated by using the Runge-Kutta 4th
order method with time step �t ¼ 0:01. Uniform shear is
applied at a strain rate _� ¼ 5� 10�5 per �t, a value small
enough to drive dislocation motion at a speed independent
of _�. Dislocations are monitored after the number of
defects has reached a steady value [18].

These simulations confirm strikingly different defect
transport mechanisms in the two systems. Figures 4(a)
and 4(b) show plots of defect positions, where color cor-
responds to time. In crystals of spheres, dislocation pairs
form and glide apart along straight paths nearly aligned
with the shear direction [Fig. 4(a)]. In stark contrast,
defects in degenerate crystals follow crooked tra-
jectories [Fig. 4(b)] and do not glide throughout the
crystal but rather are trapped within local cages. This
caging is evident in the dislocation MSD, shown for both
degenerate crystals and crystals of spheres in Fig. 4(c). To
calculate the dislocation MSD versus time, individual
dislocations that can be resolved from other nearby de-
fects are tracked between time steps. In crystals of
spheres, dislocation motion is consistent with a biased
1D random walk [solid curve, Fig. 4(c)] with a diffusion
constant D ¼ ð2:3� 0:2Þ � 10�2d2=�t and drift speed
u ¼ ð2:23� 0:05Þ � 10�2d=�t. The dislocation MSD in
degenerate crystals displays the characteristic plateau typi-
cal of particles in glassy systems.

In conclusion, we have uncovered a novel glassy system
where the constituent particles are assembled into an or-

dered crystalline structure, but the dislocations within
these crystals are caged and demonstrate slow, two-stage
glassy relaxation. Such crystals also have a natural mecha-
nism for encoding memory effects commonly observed in
glasses, since moving dislocations reorient the dimer par-
ticles, encoding constraints for subsequent defect motion.
While the transition into the glassy state typically occurs
through an increase in particle density [19], here the glassy
dislocation dynamics arises from constraints in an already
dense crystal. Future studies of crystals of spheres doped
with increasing concentrations of dimers will probe for this
transition and determine whether it can be thought of more
generically as an additional route to the jammed state.
Finally, unlike typical jammed systems, increasing the
dislocation density can reduce the amount of caging, sug-
gesting that degenerate crystals may be self-healing
materials.
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